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ABSTRACT
Automatic emotion recognition has long been developed by con-
centrating on modeling human expressive behavior. At the same
time, neuro-scientific evidences have shown that the varied neuro-
responses (i.e., blood oxygen level-dependent (BOLD) signals mea-
sured from the functional magnetic resonance imaging (fMRI))
is also a function on the types of emotion perceived. While past
research has indicated that fusing acoustic features and fMRI im-
proves the overall speech emotion recognition performance, obtain-
ing fMRI data is not feasible in real world applications. In this work,
we propose a cross modality adversarial network that jointly models
the bi-directional generative relationship between acoustic features
of speech samples and fMRI signals of human percetual responses
by leveraging a parallel dataset. We encode the acoustic descriptors
of a speech sample using the learned cross modality adversarial
network to generate the fMRI-enriched acoustic vectors to be used
in the emotion classifier. The generated fMRI-enriched acoustic
vector is evaluated not only in the parallel dataset but also in an
additional dataset without fMRI scanning. Our proposed framework
significantly outperform using acoustic features only in a four-class
emotion recognition task for both datasets, and the use of cyclic
loss in learning the bi-directional mapping is also demonstrated to
be crucial in achieving improved recognition rates.
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1 INTRODUCTION
Emotion governs our behaviors and daily decision making. Inte-
grating robust emotion sensing technologies provides essential
analytics of user states and traits in a number of domains geared
toward designing human-centered applications. Computing human
expressive behaviors using measurable signal recordings, e.g., audio
[2], video [6, 10, 37], and physiology[21], to infer an individual’s
emotion states has been the major focal point of past research
effort. In specifics, among these expressive human data streams,
speech is one of the most natural form of human communication.
Recent advancement in computational models for speech emotion
recognition (SER) has been observed in utilizing sophisticated deep
learning methods to achieve state-of-art accuracy [18], leveraging
cross-corporal databases to improve model robustness [36], and
further learning from emotion data in-the-wild to handle real world
complications [32]. These algorithmic development in achieving
accurate emotion sensing technology using expressive speech cues
has made the SER become an integral part of intelligent personal-
ized services, e.g., customer call center[26], human-machine dialog
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interface [23], and health applications such as depressive disorder
assessment [29] and suicidal prevention[13].

Aside from computing human expressive acoustics cues for emo-
tion recognition, various development in devices (e.g., electrocar-
diography (ECG), electroencephalography (EEG), and magnetic
resonance imaging (MRI) etc.) has also brought quantitative ev-
idence in aspects of human physiological and neuro-perceptual
response to emotion stimuli [7, 12, 21, 39]. The use of fMRI (func-
tional magnetic resonance imaging) technique is especially preva-
lent in recent years to understand the neuro-perceptual mechanism
of human brains in response to vocal emotion stimuli using the
measured blood-oxygen-level-dependent (BOLD) signal. For exam-
ple, Johnstone et al. conducted an fMRI study to examine the brain
responses to vocal expressions of anger and happiness in order to
understand whether specific brain regions would show preferen-
tial engagement in the processing of one emotion over the other
[20]; Grandjean et al. demonstrated that middle temporal sulcus
has an increased activation for angry relative to neutral prosody
[16]; Buchanan et al. found that the detection of vocal emotion
result in significantly more activity in the right inferior frontal lobe
compared to detection of verbal sounds [4].

Recent research has further demonstrated that not only does
the measured BOLD signal correlates to the emotional vocal stim-
uli, through development of deep learning frameworks, the types
of emotion categories of the vocal samples can be automatically
decoded by modeling the measured fMRI-perceptual data directly
[19, 34]. In fact, by integrating fMRI signals, which represents how
each audio samples being perceived by multiple subjects, into the
speech-based emotion recognition framework, Wu et al. has shown
that these two different modalities (expressive acoustic cues and
perceptual neuro-responses) provide complementary information
to each other. However, obtaining fMRI scans on multiple subjects
in order incorporate measurable perceptual features to improve
speech emotion recognition is not feasible in real world application.

Hence, in this work, we present an encoder framework that can
be utilized to derive an fMRI-enriched representation for acoustic
inputs through a joint generative model learning with adversarial
mechanism using data of parallel cross-modality collection (ex-
pressed emotional vocal stimuli and perceptual neuro-responses).
The idea is similar to a previous work carried out by Chen et al.
[9], where they utilized Gaussian Mixture Regression (GMR) in
order to learn the mapping function between prosody and BOLD
signal time series. Our proposed cross modality adversarial network
with cyclic loss is capable of learning the complex bi-directional
generative relationship between acoustic features and fMRI signals.
This particular cross-domain adversarial architecture has also been
shown to be useful in applications of cardiac image synthesis [8]
and compressed sensing MRI reconstruction [27]. With a learned
speech-fMRI cross modality adversarial network, we utilize the
speech encoder part of the network, which has effectively incorpo-
rated the perspective on humans neuro-perceptual responses, to
derive the fMRI-enriched acoustic features for emotion classifier.

We conduct our experiment on two different datasets. The first
set is a cross modality parallel dataset. This dataset consists of 18
subjects, where each subject is presented with 251 emotional utter-
ances stimuli designed from the USC IEMOCAP database [5]. Our
framework achieve 49.58% in a four-class emotion recognition tasks,

Table 1: Summary of the original and themerged labels of the Parallel
set (251) and the Test set (390) used in this work

Original Parallel set Test set Merged

Sad 33 33 91 91 Class 1
Happy 12 28
Excited 64 79 21 54 Class 2
Surprise 3 5
Neutral 69 69 86 86 Class 3
Angry 19 80
Distress 1 70 0 159 Class 4
Frustrated 50 79

which improves 7.99% over using only acoustic feature. Further, our
proposed cross modality adversarial network outperforms baseline
method of GMR (49.58% vs. 44.3%), and it also achieves the best
results among different well-known cross-modality networks. We
additionally evaluate the framework on a second dataset with a to-
tal of 390 utterances without fMRI data. By using the fMRI-enriched
speech encoder learned from the parallel dataset, we derive acoustic
features for the Test dataset. We obtain a four-class recognition
accuracy of 46.49%, which improves 3.93% over using acoustic fea-
tures only. The generalization and applicability of our proposed
framework in real world application is further strengthened by
evaluating on this second dataset.The rest of the paper is organized
as follows: section 2 describes about research methodology, section
3 details the experimental setup and results, and section 4 concludes
with discussion and future works.

2 RESEARCH METHODOLOGY
2.1 Datasets
There are two different datasets used in this work: 1) the Audio-
fMRI Parallel Set, and 2) the Audio Test Set. All of our audio emotion
samples are derived from the USC IEMOCAP database, which in-
cludes multimodal (speech, facial expressions, and lexical content)
behavior data. The database has been used widely to develop algo-
rithms for emotion recognition [1, 30, 33]. There are a total of 10
subjects in the database, and 641 sentences from a single male actor
in the database are collected to construct the two different datasets
(the Parallel set and the Test set) in this work. Each of the sentences
in the database is annotated with an emotion label of happiness,
anger, sadness, frustration, neutral, disgust, fear, excitement, or
surprise, and also dimensional ratings of arousal and valence are
given. We will briefly discuss the two different datasets and the
fMRI scanning set up in the following.

2.1.1 The Audio-fMRI Parallel Set. The parallel set contains a total
of 251 sentences. Six different 5-minute long emotion stimuli were
designed from these 251 sentences according to their valence and
arousal ratings. In order to collect the audio-fMRI parallel set, i.e.,
the neuro-perceptual responses to these acoustic emotion stimuli,
18 righted-handed healthy subjects between 20 and 35 years old
to participate were recruited. Each participant listened to three 5-
minute long continuous vocal emotion stimuli and had a 5-minute
break in-between. MRI scanning was conducted on a 3T scanner
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Figure 1: Our cross modality adversarial framework used for emotion recognition can be split into two parts: (upper portion)
the first part includes learning a cross modality network, i.e., training G : X → Y and F : Y → X simultaneously with Lcyc
(cycle consistency loss) and LGP (adversarial loss); (bottom portion) the second part is to derive fMRI-enriched acoustic vectors
from the learned G generator in order to train the final speech emotion recognizer.

(Prisma, Siemens, Germany). Anatomical images with spatial resolu-
tion of 1*1*1mm3(T1-weighted MPRAGE sequence) were acquired
using an EPI sequence (TR/TE = 3000 = 30ms , voxel size =3 ∗ 3 ∗ 3
mm3, 40 slices, and 100 repetitions). We performed all necessary
pre-processing steps on the collected MRI data using the DPARSF
toolbox [35] and additionally performed interpolation to generate
a sample at 1 second time step. This parallel dataset is the same
dataset used in the previous research [19, 34].

2.1.2 The Test Set. In this work, our aim is to learn a cross-modality
network encoder that can incorporate information about perceptual
responses to audio emotion stimuli as we encode speech samples
through this network. The Audio-fMRI parallel set will be used to
derive the cross-modality adversarial network. In order to further
test the generalization of our network in deriving fMRI-enriched
acoustic vectors, we use 390 unseen sentences from the same male
speaker of the IEMOCAP database to be our test set.

2.1.3 Target Emotion Label. The distribution of the original emo-
tion labels provided by the IEMOCAP database on these 641 ut-
terance is spread across eight different classes. According to the
valence-activation representation of categorical emotion, we fur-
ther merge the eight labels into four different classes [28]. Table 1
lists the original and merged labels and their associated number of
samples of both the Parallel Set and the Test Set. We use these four
emotion classes as our target emotion labels for our experiments.

2.2 Acoustic and fMRI Feature Extraction
In this section, we will describe acoustic and fMRI features used in
learning our cross modality adversarial network.

2.2.1 Acoustic Features. We extract 45 low-level acoustic descrip-
tors (LLDs) in total for each audio sample, including 1 pitch, 1
intensity, 13 MFCCs and their associated delta and delta-delta every
10ms using the Praat toolkit [3]. Furthermore, in order to align the
audio frame-level features to their corresponding fMRI framerate
(1 second), mean pooling is employed on these audio LLDs. The
proposed cross modality adversarial network is learned on these
45 acoustic LLDs.

2.2.2 fMRI Features. After preprocessing raw MRI images using
the DPARSF, we use the anatomical automatic labeling (AAL) to
split the brain into 90 regions resulting in a total of 47636 number of
voxels. We further concentrate only on the 20 emotion-related brain
regions of interest based on several prior research [14, 31] resulting
in a total of 11352 number of voxels. These regions are the left
and right of inferior temporal gyrus, middle temporal pole, middle
temporal gyrus, superior temporal pole, superior temporal gyrus,
precuneus, amygdala, hippocampus, posterior cingulate gyrus, and
anterior cingulate gyrus. Within each region, we compute 17 sta-
tistical functionals (max, min, mean, median, std, 1 percentile, 99
percentile, 99 percentile - 1 percentile, skewness, kurtosis, min
position, max position, 25 percentile, 75 percentile, 75 percentile
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- 25 percentile , power, 1st difference) to characterize the region-
wise fMRI representation resulting in a feature vector with 340
dimensions (20 × 17) computed at a framerate of 1 second.

2.3 Cross Modality Adversarial Network
Our proposed cross modality adversarial network is shown in Fig-
ure 1. The core idea of cross modality adversarial network is to
learn the bi-directional mapping functions between two modalities
by discovering the common representation space between these
heterogeneous data samples. We utilize this network to jointly learn
the relationship between acoustic features (section 2.2.1) and fMRI
responses (section 2.2.2), denoted as X and Y . Given paired training
samples {xi }Ni=1 where xi ∈ X and {yj }Nj=1 whereyj ∈ Y.We denote
the data distribution as x ∼ pdata (x) and y ∼ pdata (y).

2.3.1 Adversarial Loss. Our network includes two mapping func-
tions in a structure of generative adversarial network architec-
ture: one is from acoustic feature space to fMRI representation
G : X → Y and another one is from fMRI to acoustic F : Y → X .
For the mapping function G and its discriminator DY , we can ex-
press the network objectives by defining an adversarial loss [15]
as:

LGAN (G,DY ,X ,Y ) = Ey∼pdata (y)[loд(DY (y))]

+Ex∼pdata (x )[loд(1 − DY (G(x)))]

GG learns from the source domain X in order to generate a code
vector GG (x) that looks similar to the feature vector derived from
domain Y , and DY aims to ensure that generated samples G(x)
to be distribution-ally similar to the real samples y by trying to
identify fake samples.GG iteratively aims to minimize this objective
functional against an adversary DY that tries to maximize it:
minGmaxDY (LGAN ,G,DY ,X ,y). The similar adversarial strategy
can be used to to learn the mapping function F : Y → X and its
discriminator DX , i.e.minGmaxDX (LGAN ,G,DX ,Y ,x).

The two mapping functions are jointly optimized in the training
process by chaining the parameters of two generators in order to
learn the bi-directional mapping relationships simultaneously. To
further constrain the space in identifying the possible mapping
functions, we use a cycle consistency loss for the cross modality
adversarial network, which ensures that these bi-directional func-
tions need to learn a mapping that is cycle consistent [38]. The
cycle consistent loss is defined as:

Lcyc (G, F ) = Ex∼pdata (x )[∥F (G(x)) − x ∥1]

+Ey∼pdata (y)[∥G(F (y)) − y∥1]

The network can integrate the cycle loss into its objective function
defined as:

L(G, F ,Dx ,Dy ) = LGAN (G,DY ,X ,Y ) + LGAN (F ,Dx ,Y ,X )

+λcycLcyc (G, F )

where λcyc affects the relative importance between the two ob-
jectives. In summary, our system involves two set of adversarial
networks which are trained simultaneously to minimize the follow-
ing loss:

G*,F * = arg min
G,F

max
DX ,DY

L(G, F ,DX ,Dy )

2.3.2 Improved Training. In order to further avoid problems of
gradient vanish and model collapse, we utilize an improved WGAN
[17] objective function with gradient penalty defined as:

LGP = Ex̃∼Pд [D(x̃)] − Ex∼Pr [D(x)]

+λдpEx̃∼Px̃ [(∥ ▽x̃ D(x̃) − 1∥)2]

where x̃ is sampled uniformly along a straight line between a real
and a generated feature. We set all λдp to be 5 after greed search. Fi-
nally, our proposed cross modality adversarial network is optimized
using the following complete objective function:

L(G, F ,Dx ,Dy ) = LGP (G,DY ,X ,Y )

+LGP (F ,Dx ,Y ,X ) + λLcyc (G, F )

2.4 fMRI-Enhanced Emotion Recognition
As Figure 1 demonstrates, our work involves first learning a map-
ping function using the cross modality adversarial network (section
2.3) learned between paired frame-level acoustic features and and
fMRI features in the parallel set, and then we utilize the network
to generate fMRI-enriched features for each audio sample to train
the final acoustic-based emotion recognizer. The cross modality
adversarial network include two generators: acoustic-to-fMRI and
fRMI-to-acoustic generators GG and GF . These generators can be
intuitively thought as encoder networks that map the single modal-
ity feature space to a common cross-modality feature space. Hence,
by inputting frame-level acoustic low-level features into the gener-
ator GG , we effectively transform the original acoustic feature and
obtain an fMRI-enriched acoustic vector.

Our approach in constructing the emotion recognizer is illus-
trated in the bottom of Figure 1. We first input frame-level acoustic
features into the generator GG to obtain fMRI-enriched acoustic
features at every second. Since an emotion label is defined at the
utterance level and each audio sample is different in its duration,
we conduct session-level encoding using 15 functionals (max, min,
mean, median, std, 1 percentile, 99 percentile, 99 percentile - 1
percentile, skewness, kurtosis, min position, max position, 25 per-
centile, 75 percentile, 75 percentile - 25 percentile) to derive a final
feature vector (675 dimensions) as input to support vector machine.

3 EXPERIMENTAL SETUP AND RESULTS
3.1 Experimental Setup
We setup two different four-class emotion recognition experiments
in this work. Experiment I: the Parallel Set, and Experiment
II: the Test Set. The evaluation is carried out using 10-fold cross
validation scheme, and the evaluation metric is unweighted average
recall (UAR). The recall is the ratio tp/(tp + f n) where tp is the
number of true positives and fn the number of false negatives.

Linear support vector machine is used as the final classifier. The
parameters of the cross modality adversarial network are listed
below: the learning rate, λcyc , and the number of epoch is set to
be 0.00005, 25, 268 respectively. All the models are 5-layer DNN
architecture, both generators utilize activation function of relu, and
discriminators use leaky_relu.
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Figure 2: (A) GMR-fMRI(Gaussian Mixture Regression): Using Gaussian Mixture Regression to derive fMRI-enriched acoustic
feature. (B) cGAN-fMRI (Conditional GAN): Given acoustic feature to be constrain in generator and discriminator to compute
fMRI-enriched acoustic feature). (C) No-Cycle consistence loss (Two pairs of GAN without cyclic mapping): Only chain the
two generators without reconstructed mapping and cyclic loss.

3.1.1 Experiment I:. Since this experiment is conducted on a
parallel dataset, we also report accuracy obtained by using the
original feature set computed from the collected the audio and
the fMRI data. The Audio feature set is a 675 dimensional feature
vector computed for every audio sample, the fMRI feature set is
computed for every utterance by mean pooling on the frame-level
340 dimensional fMRI features (both extraction are described in
section 2). We also report accuracy obtained by representing fMRI
using principal component analyses on the voxel-wise values (PCA-
fMRI), which is a widely employed feature extraction method for
MRI [11].

We further compare our proposed cross modality adversarial
network with the following methods, which can also be used to
learn the relationship between fMRI and audio features in order to
generate the fMRI-enriched acoustic vectors:

• Gaussian Mixture Model Regression [25] (GMR-fMRI): Us-
ing Gaussian Mixture Regression to generate fMRI-enriched
acoustic vectors

• Conditional Generative Adversarial Network [24] (cGAN-
fMRI): Using conditional GAN to generate fMRI-enriched
acoustic vectors

• Cross Modality Adversarial Netowrk without Cycle-Loss
(Code-NoCyc): Using the proposed cross modality adversar-
ial network without the cycle loss to generate fMRI-enriched
acoustic vectors

• Cross Modality Adversarial Netowrk with L2 Cycle-Loss
(Code-l2-fMRI): Using the proposed cross modality adver-
sarial network with L2-norm cycle loss to generate fMRI-
enriched acoustic vectors

• Cross Modality Adversarial Netowrk with L1 Cycle-Loss
and unpaired fMRI-Audio data (Code-unpair): Using the pro-
posed cross modality adversarial network with L1-norm
cycle loss by learning on unpaired fMRI-Audio samples to
generate fMRI-enriched acoustic vectors

• Cross Modality Adversarial Netowrk with L1 Cycle-Loss and
paired fMRI-Audio data (Code-l1-fMRI): Using the proposed
cross modality adversarial network with L1-norm cycle loss
by learning on paired fMRI-Audio samples to generate fMRI-
enriched acoustic vectors

A schematic of different cross modality relationship learning algo-
rithms is also depicted in Figure 2.

3.1.2 Experiment II:. The main purpose of this work is to ob-
serve our system’s generalization on a separate data set (the Test
Set) without fMRI scanning, and the emotion distribution between
the two datasets are also different. We first learn the cross modality
network using the Parallel Set. We generate fMRI-enriched acoustic
feature using the the cross modality encoding network (acoustic-
to-fMRI), which is then fed into support vector machine.

3.2 Experiment I Results and Discussions
Table 2 summarizes the Experiment I results. The baseline methods,
i.e., using the original features only, achieve around 40% UARs in
the four-class emotion recognition tasks (chance level is 25%). In
specifics, Audio-only feature achieves 41.59%, fMRI-only feature
achieves 42.78%, and fMRI-PCA based method obtains 41.79% UARs
respectively. By comparing between these original features and the
fMRI-enriched acoustic feature sets, we observe, generally, that the
fMRI-enriched acoustic features are capable of achieving a higher
emotion recognition rates as compared with the original single
modality features.

Among different methods in generating the fMRI-enriched acous-
tic vectors, our proposed method based on cross modality adversar-
ial network achieves the highest recognition rates (49.58%). There
are several observations to be made. Firstly, by comparing it with
the GMR-based method (44.3%), while GMR-based method outper-
forms single modality features, the modeling power of GMR is more
limited due to its relatively stronger probabilistic parametrization
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Table 2: Results of Experiment I: GMR-fMRI: reconstructed feature using Gaussian Mixture Regression; cGAN-fMRI: recon-
structed feature using conditional GAN; Code-l1: cross modality adversarial network with L1 norm used in the consistence
loss; Code-l2: cross modality adversarial network with L2 norm used in the consistence loss; Code-NoCyc: cross modality
adversarial network without consistence loss; Code-unpair: cross modality adversarial network learning from unpaired data

Original Features (Audio and fMRI) fMRI-Enriched Acoustic Features

Audio fMRI PCA-fMRI GMR-fMRI cGAN-fMRI Code-l1-fMRI Code-l2-fMRI Code-unpair Code-NoCyc
Class 1 30.3 0 6.06 36.36 60.60 66.66 87.87 57.57 51.51
Class 2 46.84 74.68 64.56 54.43 53.16 46.83 31.64 37.97 45.56
Class 3 46.37 52.16 59.42 50.72 34.78 37.68 7.24 42.02 39.13
Class 4 42.58 44.28 37.14 35.71 35.71 47.14 5.71 58.57 44.28
Average 41.59 42.78 41.79 44.30 46.06 49.58 33.12 49.03 45.12

constraint that GMR impose when learning the generative relation-
ship between acoustic stimuli and fMRI responses. The difference
in the modeling power of learning complex generative density
functions when using adversarial mechanism versus conventional
Gaussian-based assumption has also been identified previously [22].

Secondly, our proposed cross modality network learns a bi-
directional mapping between acoustic and fMRI. This bi-directional
learning is demonstrated to be beneficial by comparing with ac-
curacy obtained by method of cGAN-fMRI (46.06%). The method
of cGAN-fMRI essentially learns a one-sided mapping function
(acoustic to fMRI) by using real fMRI samples as conditions in the
adversarial process. However, we also observe that the appropriate
choice on the type of cycle-consistent loss when learning the bi-
directional mapping in the adversarial networks is crucial in obtain-
ing the best performances. Using a L2-norm in the cycle-consistent
loss is detrimental in this context (33.12%), and bi-directional learn-
ing without constraint of cycle consistent loss results in an accuracy
of only 45.12% potentially due to convergence to less appropriate
mapping function. We initially believe this may be due to these 15
common functionals used to encode the fMRI data. The L1 loss tend
to be more robust, and some of these functionals are not all robust
statistics. The training in GAN also tend to be more sensitive to
outlier, this may be the reason why the L2 loss lead to a collapse in
training.

Lastly, we also see an interesting effect that while the best accu-
racy is obtained by learning the cross modality network from the
pair acoustic-fMRI data, a similar significant boost in recognition
accuracy (49.03%) is also observed when learning the same cross
modality network using unpaired data (two domains of features
are originally mismatched with time index). This may indicate that
the additional modeling power in recognizing emotion may largely
come from learning the common representation space between
fMRI and acoustic signals, where the actual one-to-one mapping
provides only secondary information; however additional analysis
is required to understand this phenomenon in detail. In summary,
we observe that fMRI-enriched acoustic vectors are useful in im-
proving emotion recognition, and our proposed bi-directional cross
modality adversarial network obtains the best recognition accuracy.

3.3 Experiment II Results and Discussions
We further evaluate our framework in the Test Set, where there
is no fMRI data available, and the Test Set has a different emotion

distribution than the Parallel set (see Table 1). Table 3 summa-
rizes experimental results among different methods. Our proposed
method (Code-fMRI) obtains the best performance overall (46.29%),
which improves 3.92% over acoustic-only method (42.56%).

We observe that while audio-only recognition accuracy remain
similar across the two different datasets (the Parallel Set and the
Test Set), the recognition rates obtained from using fMRI-enriched
acoustic vectors degrade slightly (49.58% versus 46.29%). It is likely
due to the limitation in the size of the Parallel Set, where there is not
enough data for each emotion category (e.g., only 33 utterances in
Class 1). However, it is still encouraging to see that by transforming
the original acoustic features to fMRI-enriched acoustic vectors
using a cross modality network learned from a different dataset
would help improve the emotion recognition of the current dataset.

4 CONCLUSIONS AND FUTUREWORKS
Expressive aspect of acoustic information has been leveraged to
develop computational approaches in realizing emotion sensing
technologies. Recently, the perceptual responses of human toward
affective vocal stimuli can be measured using the MRI technique,
and it has been shown that these neuro-perceptual responses can
provide complementary information to the acoustic information in
terms of improving emotion recognition systems of audio samples.
However, obtaining these neuro-perceptual measurements to aid
emotion recognition system is infeasible in real world application.
In this work, we propose a cross modality adversarial network
that learns a bi-directional mapping between these two modalities.
Then, by leveraging the learned acoustic to fMRI generator, we
can obtain fMRI-enriched acoustic vectors as an enhanced version

Table 3: Results of Experiment II: GMR-fMRI: reconstructed
feature using Gaussian Mixture Regression; cGAN-fMRI:
reconstructed feature using conditional GAN; Code-fMRI:
cross modality adversarial network with L1 norm used in
the consistence loss; Code-NoCyc: cross modality adversar-
ial network without consistence loss

Test Set Audio GMR-fMRI cGAN-fMRI Code-fMRI Code-NoCyc
Class 1 60.43 65.93 64.83 60.43 68.13
Class 2 27.77 29.62 29.62 29.62 25.92
Class 3 34.88 23.25 23.25 26.74 27.90
Class 4 47.16 52.83 58.49 69.18 61.00
Average 42.56 42.27 44.05 46.49 45.74
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of the original acoustic features. We evaluate our framework on
two different datasets, i.e., a Parallel Set and a Test Set. Our experi-
ments demonstrate that our proposed network indeed is capable of
generating fMRI-enriched acoustic vectors that help improve the
recognition rates over using audio-only features.

There are several future directions. One of them is that the cur-
rent input frame-level audio and fMRI features are hand-crafted
descriptors computed using statistical functionals. We will inves-
tigate methods toward end-to-end learning while incorporating
temporal aspects of these two feature streams as we continue to
collect a larger scale of the parallel database and evaluate the gener-
alization of the proposed method across more datasets. Also, while
fMRI provides a good spatial resolution of our brain responses,
it lacks granular temporal resolution. The affective information
encoded in the vocal cues often changes rapidly over time, and
while it affects our neuro-perceptual responses, it can not be ade-
quately captured by MRI. We will also explore the use of other brain
responses measurements, e.g., electroencephalography, to obtain
perceptual responses at a more fine-grained time-scale in order to
further enhance our cross modality network. On the other hand,
it’s interesting topic to test our model on multi-speakers, thus, the
expansion of our dataset and the way to solve such issues will be
put on our to-do list.
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